Complex Number And Quadratic Equations Test Online MCQs
Home / Tests / Complex Number and Quadratic Equations Test Online MCQs

Complex Number and Quadratic Equations Test Online MCQs

Test Name Complex Number and Quadratic Equations Test
Subject Math
Test Type MCQs
Total Question 15
Total Marks 30
Total Time 15 Mints
Test Help For
  • All Admission Tests Prep.
  • All Jobs and recruitment test.
  • Math subject test prep.
  • Quantitative Reasoning Test prep.
  • Mathematics GK preparation.

Complex Number and Quadratic Equations Test Online MCQs

Math

1. If (x + iy)1/3 = a + ib, then x/a + y/b =

Question 1 of 15

2. The complex number sin x + i cos 2x and cos x - i sin 2x are conjugate to each other for

Question 2 of 15

3. The value of p for which the difference between the roots of the equation x2 + px + 8 = 0 is 2 are

Question 3 of 15

4. If Z(3 + 4i) = 2 + 3i then the value of Z is:

Question 4 of 15

5. Both roots of the equation
(x - b)(x - c) + (x - a)(x - c) + (x -a) (x - b) = 0

Question 5 of 15

6. If 3 + 4i is the root of the equation
x2 + px + q = 0, then

Question 6 of 15

7. The coefficient of x in the equation x2 + px + q = 0 was taken as 17 in place of 13 and its roots we found to be -2 and -15. The roots of the original equation are

Question 7 of 15

8. If one root of 5x2 + 13x + k = 0 is reciprocal of the other, then k is equal to

Question 8 of 15

9. The number of solutions of the equation |x2| - 3 |x| + 2 = 0 is

Question 9 of 15

10. The real roots of the equation x2 + 5 |x| + 4 = 0 are

Question 10 of 15

11. If (1 + i)x - 2i/3 + i  +  (2 - 3i)y + i/3 - i = i, then the real values of x and y given by

Question 11 of 15

12. 1 + i2 + i4 + i6 + ....... + i2n is

Question 12 of 15

13. The argument of (1 - i √3)/(1 + i √3) is

Question 13 of 15

14. The least positive integer n which will reduce (1 + i/1 - i)n to unity is:

Question 14 of 15

15. The equation x - 2/(x - 1) = 1 - 2/x(x - 1) has

Question 15 of 15


 

Test By Subject
Test By Topics
Have any Problem or Error please mention in below comments section.

Leave a Reply

Your email address will not be published. Required fields are marked *